Part Number Hot Search : 
3216X7R 1N3293A CXD2540Q US3004 EC110 GC70F HMC28606 ASM3P
Product Description
Full Text Search
 

To Download IRGP430U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Previous Datasheet
Index
Next Data Sheet
PD - 9.780A
IRGP430U
INSULATED GATE BIPOLAR TRANSISTOR
Features
* Switching-loss rating includes all "tail" losses * Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve
G E C
UltraFast IGBT
VCES = 500V VCE(sat) 3.0V
@VGE = 15V, I C = 15A
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.
TO-247AC
Absolute Maximum Ratings
Parameter
VCES IC @ T C = 25C IC @ T C = 100C ICM ILM VGE EARV PD @ T C = 25C PD @ T C = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw.
Max.
500 25 15 50 50 20 10 100 42 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m)
Units
V A
V mJ W
C
Thermal Resistance
Parameter
RJC RCS RJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
-- -- -- --
Typ.
-- 0.24 -- 6 (0.21)
Max.
1.2 -- 40 --
Units
C/W g (oz)
C-599
Revision 0
To Order
Previous Datasheet
Index
Next Data Sheet
IRGP430U
Electrical Characteristics @ T = 25C (unless otherwise specified) J
V(BR)CES V(BR)ECS
V(BR)CES/TJ
VCE(on)
Parameter Collector-to-Emitter Breakdown Voltage Emitter-to-Collector Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage
VGE(th) VGE(th)/TJ gfe ICES IGES
Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current
Min. Typ. Max. Units Conditions 500 -- -- V VGE = 0V, I C = 250A 20 -- -- V VGE = 0V, IC = 1.0A -- 0.46 -- V/C VGE = 0V, I C = 1.0mA -- 2.3 3.0 IC = 15A V GE = 15V -- 2.8 -- V IC = 25A See Fig. 2, 5 -- 2.6 -- IC = 15A, T J = 150C 3.0 -- 5.5 VCE = VGE, IC = 250A -- -11 -- mV/C VCE = VGE, IC = 250A 2.3 8.1 -- S VCE = 100V, I C = 15A -- -- 250 A VGE = 0V, V CE = 500V -- -- 1000 VGE = 0V, V CE = 500V, T J = 150C -- -- 100 nA VGE = 20V
Switching Characteristics @ T = 25C (unless otherwise specified) J
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 31 6.2 12 29 11 91 66 0.24 0.17 0.41 13 27 130 130 0.76 13 660 110 12 Max. Units Conditions 47 IC = 15A 9.3 nC VCC = 400V See Fig. 8 19 VGE = 15V -- TJ = 25C -- ns IC = 15A, V CC = 400V 160 VGE = 15V, R G = 23 120 Energy losses include "tail" -- -- mJ See Fig. 9, 10, 11, 14 0.61 -- TJ = 150C, -- ns IC = 15A, V CC = 400V -- VGE = 15V, R G = 23 -- Energy losses include "tail" -- mJ See Fig. 10, 14 -- nH Measured 5mm from package -- VGE = 0V -- pF VCC = 30V See Fig. 7 -- = 1.0MHz
Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC=80%(V CES), VGE=20V, L=10H, R G= 23, ( See fig. 13a ) Repetitive rating; pulse width limited by maximum junction temperature. Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot.
C-600
To Order
Previous Datasheet
Index
Next Data Sheet
IRGP430U
40
For bo th:
Tria ngular w ave:
LO A D C U R RE NT (A )
30
D uty cyc le: 50% TJ = 12 5C T s ink = 90C G ate drive as spec ifie d Pow er D issipation = 24W
C lam p voltage: 80% of rated
Sq uare w ave:
20
60% of rated voltage
10
Id e a l d iod e s
0 0.1 1 10 100
f, F re quency (kH z)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I RMS of fundamental; for triangular wave, I=I PK)
100
1000
I C , C ollector-to-E mitter C urrent (A )
TJ = 25 C TJ = 1 50 C
10
IC , C ollector-to-E m itter Current (A )
100
T J = 1 50 C
10
TJ = 25 C
1
1 1
V G E = 15 V 20 s P UL S E W ID TH
10
0.1 5 10
V C C = 1 00 V 5 s P UL S E W IDTH
15 20
V C E , C o llector-to-Em itter V oltage (V)
V G E , G ate -to-E m itter V olta ge (V )
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
C-601
To Order
Previous Datasheet
Index
Next Data Sheet
IRGP430U
25
V G E = 15 V
4.5
V G E = 15 V 80 s P U L S E W ID TH
V C E , C ollector-to-E mitter V oltage (V )
Maxim um D C Collector C urrent (A )
4.0
20
3.5
I C = 3 0A
15
3.0
10
2.5
I C = 1 5A
2.0
5
1.5
I C = 7.5 A
0 25 50 75 100 125 150
1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160
T C , C ase Tem perature (C )
TC , C ase Tem perature (C )
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature
10
T he rm al R e sp ons e (Z thJ C )
1
D = 0 .5 0
0 .2 0 0 .1 0
PD M
0.1
0 .0 5 0 .0 2 0 .0 1 S IN G L E P U L S E (T H E R M A L R E S P O N S E )
t
1
t
2
N o te s : 1 . D u ty fa c to r D = t
1
/t
2
0.01 0.00001
2 . P e a k T J = P D M x Z thJ C + T C
0.0001
0.00 1
0.01
0.1
1
10
t 1 , R e c ta n gu la r P u ls e D ura tio n (s e c )
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
C-602
To Order
Previous Datasheet
Index
Next Data Sheet
IRGP430U
140 0
C, C apacitance (pF)
100 0
Cies
Coes
800
600
V G E , G ate-to-E m itter V oltag e (V )
120 0
V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc
20
V C E = 40 0V I C = 15 A
16
12
8
400
Cres
4
200
0 1 10 100
0 0 10 20 30 40
V C E , C o llector-to-Em itter V oltage (V)
Q G , To ta l G a te C h arg e (nC )
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0 .4 8
Total S w itching L osse s (mJ)
0 .4 6
0 .4 4
T otal S w itch ing Losses (m J)
VCC VGE TC IC
= 40 0V = 1 5V = 25C = 15 A
10
R G = 50 V GE = 1 5 V V CC = 40 0V
I C = 30A
1
0 .4 2
I C = 1 5A
0 .4 0
I C = 7.5A
0 .3 8 0 10 20 30 40 50 60
0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160
R G , G ate R es istance ( )
W
TC , C ase Tem peratu re (C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Case Temperature
C-603
To Order
Previous Datasheet
Index
Next Data Sheet
IRGP430U
2.0
1.6
IC , Collector-to-Emitter Current (A)
Total S w itc hing Losses (m J)
R G = 23 T C = 150C V C C = 4 00 V V G E = 15 V
100
VGE = 20V TJ = 125C
SAFE OPERATING AREA
1.2
10
0.8
0.4
0.0 0 10 20 30 40
1 1 10 100
A
1000
I C , C ollecto r-to-E m itter C urrent (A )
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Refer to Section D for the following: Appendix A: Section D - page D-3 Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit Fig. 14a - Switching Loss Test Circuit Fig. 14b - Switching Loss Waveform Package Outline 3 - JEDEC Outline TO-247AC Section - page D-13
C-604
To Order


▲Up To Search▲   

 
Price & Availability of IRGP430U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X